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Introduction

Numerical solving PDEs

Solving PDEs in practice

PDE(s) + IC(s) or/and BC(s)
⇓

Discretization (FDM, FEM, FVM)
⇓

Algebraic (di�erence) equations
⇓

Numerical solving
⇓

Approximate solution

In the �nite di�erence method (FDM) partial di�erential equations (PDE(s))
are replaced with their �nite di�erence approximation (FDA) on a grid with
spacings h := {h1, . . . ,hn}.

PDE(s) =⇒ FDA

The initial conditions (ICs) and/or boundary conditions (BCs) are also
discretized. Then, together with FDA it gives a �nite di�erence scheme.
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Introduction

Requirements for FDA

Convergence of an approximate solution to a solution to PDE(s) at |h| −→ 0.

Challenge: �nd FDA whose solutions converge to solutions to PDE(s).

⇓

Such FDA must inherit at the discrete level all algebraic properties of PDE(s)
such as conservation laws, symmetries, maximum principle, etc.).

⇓

For polynomially nonlinear PDE(s) s(trong)-consistency of FDA (Gerdt'12).

S-consistency

FDA is s-consistent with PDE(s) if any di�erence consequence of FDA in the
limit |h| → 0 is reduced to a di�erential consequence of PDE(s).
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Introduction

Di�erential Thomas Decomposition

De�nition

Let S= and S 6= be �nite sets of di�erential polynomials such that S= 6= ∅
contains equations (∀s ∈ S=) [s = 0] whereas S 6= contains inequations
(∀s ∈ S 6=) [s 6= 0]. Then the pair

(
S=,S 6=

)
of sets S= and S 6= is called

di�erential system.

Let Sol (S=/S 6=) denote the solution set of the system
(
S=,S 6=

)
, i.e. the set of

common solutions of di�erential equations { s = 0 | s ∈ S=} that do not
annihilate elements s ∈ S 6=.

Theorem

Any di�erential system
(
S=,S 6=

)
is decomposable into a �nite set of involutive

di�erential subsystems (S=
i ,S

6=
i ) with a disjoint set of solutions:

(S=/S 6=) =⇒
⋃

i

(S=
i /S

6=
i ) , Sol (S=/S 6=) =

⊎
i

Sol (S=
i /S

6=
i ) . (1)
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Introduction

Navier-Stokes PDE system

By completing to involution the Navier-Stokes system of equations for
unsteady two-dimensional motion of incompressible viscous liquid of constant
viscosity can be written in the following form

F :=


f1 := ux + vy = 0 ,
f2 := ut + uux + vuy + px − 1

Re (uxx + uyy ) = 0 ,
f3 := vt + uvx + vvy + py − 1

Re (vxx + vyy ) = 0 ,
f4 := u2

x + 2vxuy + v2
y + pxx + pyy = 0 .

Here

f1 - the continuity equation,

f2, f3 - the proper Navier-Stokes equations,

f4 - the pressure Poisson equation which is
the integrability condition for {f1, f2, f3},

(u, v) - the velocity �eld,

p - the pressure,

Re - the Reynolds number.
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Introduction

Divergence form

The involutive Navier-Stokes system admits conservation law of the form

∂P
∂t

+
∂Q
∂x

+
∂R
∂y

= 0 .

In terms of {f1, f2, f3, f4} this form reads

Conservation law form



f1 : ∂
∂x u + ∂

∂y v = 0 ,

f2 : ∂
∂t u + ∂

∂x

(
u2 + p − 1

Re ux
)

+ ∂
∂y

(
vu − 1

Re uy
)

= 0 ,

f3 : ∂
∂t v + ∂

∂x

(
uv − 1

Re vx
)

+ ∂
∂y

(
v2 + p − 1

Re vy
)

= 0 ,

f4 : ∂
∂x (uux + vuy + px ) + ∂

∂y (vvy + uvx + py ) = 0 .

D.Michels et al. (KAUST,JINR,SSU) Strongly Consistent Approximations 17 April 2018 7 / 25



Finite Di�erence Approximations

Computational mesh

We use an orthogonal and uniform computational grid as the set of points

(jh, kh,nτ) ∈ R3, τ > 0, h > 0, (j , k ,n) ∈ Z3.

In a grid node (jh, kh,nτ) a solution is approximated by the triple of grid
functions

{un
j,k , v

n
j,k ,p

n
j,k} := {u, v ,p} |x=jh,y=kh,t=τn .

We introduce di�erences {σx , σy , σt} acting on a grid function φ(x , y , t) as

σx ◦ φ = φ(x + h, y , t), σy ◦ φ = φ(x , y + h, t), σt ◦ φ = φ(x , y , t + τ)

and denote by R the ring of di�erence polynomials over K.
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Finite Di�erence Approximations

Integration contour

To discretize NSS on the grid choose the integration contour Γ in the (x , y)
plane

-

6
�

?

u
uu

uk

k + 1

k + 2

j j + 1 j + 2
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Finite Di�erence Approximations

The Navie-Stokes system in integral form

Integral conservation law form



∮
Γ

−vdx + udy = 0 ,

xj+2∫
xj

yk+2∫
yk

udxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
vu − 1

Re uy
)

dx −
(
u2 + p − 1

Re ux
)

dy
)

dt = 0 ,

xj+2∫
xj

yk+2∫
yk

vdxdy

∣∣∣∣∣
tn+1

tn

−
tn+1∫
tn

(∮
Γ

(
v2 + p − 1

Re vy
)

dx −
(
uv − 1

Re vx
)

dy
)

dt = 0 ,

∮
Γ

−
(
(v2)y + (uv)x + py

)
dx +

(
(u2)x + (vu)y + px

)
dy = 0 .
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Finite Di�erence Approximations

Additional relations

Now we add integral relations between dependent variables and derivatives

Exact integral relations



xj+1∫
xj

(u2)x dx = u(xj+1, y)2 − u(xj , y)2 ,
yk+1∫
yk

(v2)y dy = v(x , yk+1)
2 − v(x , yk )

2 ,

xj+1∫
xj

(uv)x dx = u(xj+1, y)v(xj+1, y)− u(xj , y)v(xj , y) ,

yk+1∫
yk

(uv)y dy = u(x , yk+1)v(x , yk+1)− u(x , yk )v(x , yk ) ,

xj+1∫
xj

ux dx = u(xj+1, y)− u(xj , y) ,
yk+1∫
yk

uy dy = u(x , yk+1)− u(x , yk ) ,

xj+1∫
xj

vx dx = v(xj+1, y)− u(xj , y) ,
yk+1∫
yk

vy dy = v(x , yk+1)− u(x , yk ) ,

xj+1∫
xj

px dx = p(xj+1, y)− u(xj , y) ,
yk+1∫
yk

py dy = p(x , yk+1)− u(x , yk ) .
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Finite Di�erence Approximations

Finite di�erence approximation 1

By using the midpoint integration approximation for the integrals over x and
y and the top-left corner approximation for integration over t . Then
elimination of partial derivatives from the obtained di�erence system gives the
following FDA with a 5× 5 stencil (Gerdt,Blinkov'2009)

FDA 1 =



e1
n
j,k :=

un
j+1,k−un

j−1,k
2h +

vn
j,k+1−vn

j,k−1
2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ +
un

j+1,k
2−un

j−1,k
2

2h +
vn

j,k+1un
j,k+1−vn

j,k−1un
j,k−1

2h +
pn

j+1,k−pn
j−1,k

2h

− 1
Re

(
un

j+2,k−2un
jk +un

j−2,k

4h2 +
un

j,k+2−2un
jk +un

j,k−2

4h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ +
un

j+1,k vn
j+1,k−un

j−1,k vn
j−1,k

2h
vn

j,k+1
2−vn

j,k−1
2

2h +
pn

j,k+1−pn
j,k−1

2h

− 1
Re

(
vn

j+2,k−2vn
jk +vn

j−2,k

4h2 +
vn

j,k+2−2vn
jk +vn

j,k−2

4h2

)
= 0,

e4
n
j,k :=

un
j+2,k

2−2un
j,k

2+un
j−2,k

2

4h2 +
vn

j,k+2
2−2vn

j,k
2+vn

j,k−2
2

4h2

+ 2 un
j+1,k+1vn

j+1,k+1−un
j+1,k−1vn

j+1,k−1−un
j−1,k+1vn

j−1,k+1+un
j−1,k−1vn

j−1,k−1

4h2

+
pn

j+2,k−2pn
jk +pn

j−2,k

4h2 +
pn

j,k+2−2pn
jk +pn

j,k−2

4h2 = 0 .
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Finite Di�erence Approximations

Finite di�erence approximation 2

If one applies the trapezoidal approximation to the integral relations for
ux ,uy , vx , vy ,u2)x , (v2)y and p instead of the midpoint approximation, then it
produces FDA with a 3× 3 stencil (Gerdt,Blinkov'2009)

FDA 2 =



e1
n
j,k :=

un
j+1,k−un

j−1,k
2h +

vn
j,k+1−vn

j,k−1
2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ + un
jk

un
j+1,k−un

j−1,k
2h + vn

jk
un

j,k+1−un
j,k−1

2h +
pn

j+1,k−pn
j−1,k

2h

− 1
Re

(
un

j+1,k−2un
jk +un

j−1,k

h2 +
un

j,k+1−2un
jk +un

j,k−1

h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ + un
jk

vn
j+1,k−vn

j−1,k
2h + vn

jk
vn

j,k+1−vn
j,k−1

2h +
pn

j,k+1−pn
j,k−1

2h

− 1
Re

(
vn

j+1,k−2vn
jk +vn

j−1,k

h2 +
vn

j,k+1−2vn
jk +vn

j,k−1

h2

)
= 0,

e4
n
j,k :=

(
un

j+1,k−un
j−1,k

2h

)2
+ 2 vn

j+1,k−vn
j−1,k

2h
un

j,k+1−un
j,k−1

2h +
(

vn
j,k+1−vn

j,k−1
2h

)2

+
pn

j+1,k−2pn
jk +pn

j−1,k

h2 +
pn

j,k+1−2pn
jk +pn

j,k−1

h2 = 0
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Finite Di�erence Approximations

Finite di�erence approximation 3

The third approximation with 3× 3 stencil is obtained from NSS by the
conventional discretization what consists of replacing the temporal derivatives
with the forward di�erences and the spatial derivatives with the central
di�erences.

FDA 3 =



e1
n
j,k :=

un
j+1,k−un

j−1,k
2h +

vn
j,k+1−vn

j,k−1
2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ + un
jk

un
j+1,k−un

j−1,k
2h + vn

jk
un

j,k+1−un
j,k−1

2h +
pn

j+1,k−pn
j−1,k

2h

− 1
Re

(
un

j+1,k−2un
jk +un

j−1,k

h2 +
un

j,k+1−2un
jk +un

j,k−1

h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ + un
jk

vn
j+1,k−vn

j−1,k
2h + vn

jk
vn

j,k+1−vn
j,k−1

2h +
pn

j,k+1−pn
j,k−1

2h

− 1
Re

(
vn

j+1,k−2vn
jk +vn

j−1,k

h2 +
vn

j,k+1−2vn
jk +vn

j,k−1

h2

)
= 0,

e4
n
j,k :=

(
un

j+1,k−un
j−1,k

2h

)2
+ 2 vn

j+1,k−vn
j−1,k

2h
un

j,k+1−un
j,k−1

2h +
(

vn
j,k+1−vn

j,k−1
2h

)2

+
pn

j+1,k−2pn
jk +pn

j−1,k

h2 +
pn

j,k+1−2pn
jk +pn

j,k−1

h2 = 0
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Consistency Analysis

Di�erential and di�erence consequences

A perfect di�erence ideal JF̃ K generated by F̃ ⊂ R is the smallest di�erence

ideal containing F̃ and such that for any f̃ ∈ R and k1, k2, k3 ∈ N≥0

(σx ◦ f̃ )k1 (σy ◦ f̃ )k2 (σt ◦ f̃ )k3 ∈ JF̃ K =⇒ f̃ ∈ JF̃ K .

In di�erence algebra, perfect ideals play the same role as radical ideals in
commutative and di�erential algebra.

Set F ⊂ R (NSS) generates radical di�erential ideal JF K.

Let a �nite set of di�erence polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R

be a FDA to F .

Di�erential and di�erence consequences

A di�erential (resp. di�erence) polynomial f ∈ R (resp. f̃ ∈ R) is
di�erential-algebraic (resp. di�erence-algebraic) consequence of F (resp. F̃ ) if
f ∈ JF K (resp. f̃ ∈ JF̃ K).
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Consistency Analysis

Conventional (weak) consistency of FDA

We shall say that a di�erence equation f̃ = 0 implies (in the continuous limit)

the di�erential equation f = 0 and write f̃ B f if f does not contain the grid
spacings h, τ and the Taylor expansion about a grid point (un

j,k , v
n
j,k ,p

n
j,k )

transforms equation f̃ = 0 into f + O(h, τ) = 0 where O(h, τ) denotes
expression which vanishes when h and τ go to zero.

De�nition

The di�erence approximation F̃ is (weakly or w-)consistent with F if p = 4
and

(∀f̃ ∈ F̃ ) ( ∃f ∈ F ) [ f̃ B f ] .

The requirement of w-consistency which has been universally accepted in the
literature, is not satisfactory by the following two reasons:

1 The cardinality of FDA to a system of di�erential equations may be
di�erent from that in the system.

2 A w-consistent FDA may not be good in view of inheritance of properties
of the underlying di�erential equation(s) at the discrete level.
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Consistency Analysis

Strong consistency

De�nition

An FDA to PDE(s) is strongly consistent or s-consistent if

(∀f̃ ∈ JF̃ K ) ( ∃f ∈ [F ] ) [ f̃ B f ] .

The algorithmic approach (Gerdt'12) to veri�cation of s-consistency is based
on the following statement.

Theorem

A di�erence approximation F̃ ⊂ R to F ⊂ R is s-consistent i� a (reduced)
standard basis G of the di�erence ideal [F̃ ] satis�es

(∀g ∈ G ) ( ∃f ∈ [F ] ) [ g B f ] .

Given a di�erential polynomial f ∈ R, one can algorithmically check its
membership in JF K by performing the involutive Janet reduction.
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Consistency Analysis

S-consistency analysis of FDA 1,2 and 3

All three FDAs are w-consistent. This can be easily veri�ed by the Taylor
expansion of the �nite di�erences in the set

F̃ := {e1
n
j,k ,e2

n
j,k ,e3

n
j,k ,e4

n
j,k}

about the grid point {hj ,hk ,nτ} when the grid spacings h and τ go to zero.

Proposition

Among weakly consistent FDAs 1,2, and 3 only FDA 1 is strongly consistent.

Corollary

A standard basis G of the di�erence ideal generated by the set of polynomials
in FDA 1 satis�es the condition

(∀g ∈ G ) ( ∃f ∈ [F ] ) [ g B f ] .
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Numerical Tests

Exact Solution

Suppose that the NSS is de�ned for t ≥ 0 in the square domain
Ω = [0, π]× [0, π] and provide initial conditions for t = 0 and boundary
conditions for t > 0 and (x , y) ∈ ∂Ω according to the exact solution
(Pearson'64)

u := −e−2t/Re cos(x) sin(y) ,
v := e−2t/Re sin(x) cos(y) ,
p := −e−4t/Re(cos(2x) + cos(2y))/4 .

We compute the error by means of formula:

eg = max
j,k

|gN
j,k − g(xj , yk , tf )|

1 + |g(xj , yk , tf )|
.
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Numerical Tests

Relative error in u, v and p with FDA 1 for Re = 102
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Computed error with FDA 1 (u, v and p, respectively): N = 40, tf = 1,
Re = 102 and m = 100
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Numerical Tests

Numerical problem

We simulate a Karman vortex street by solving the Navier-Stokes system
numerically over time using the three above presented FDAs. The relative
error of the con�guration vector norm ‖(p,u, v)‖ is measured over time.

The superior behavior of the s-consistent FDAs compared to the s-inconsistent
FDA can clearly be observed. Whereas FDA 2,3 performs slightly better than
FDA 1 for small t < 2 s, FDA 1 outperforms FDA 2,3 in the long term.

As expected, stability can be improved by increasing spatial resolution m.
Since in our experiments we are essentially interested in comparing di�erent
discretizations of u, v , and p on the space domain, the value of the time step
was always chosen in order to provide stability. Using Re = 220 we can
observed the characteristic repeating pattern of the swirling vortices.
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Numerical Tests

Simulation of the K�arm�an vortex street
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Numerical Tests

Simulation of the K�arm�an vortex street
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Ðèñ.: Temporal evolution of the relative error of the K�arm�an vortex street simulation
using di�erent FDAs: FDA 1 (red curves), FDA 2 (green curves), and FDA 3 (blue
curve). Moreover, di�erent spatial resolutions are used: m = 250 (dotted curves),
m = 500 (dashed curves), and m = 1 000 (solid curves).
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Conclusions

Conclusions

Main results obtained

We investigated s-consistency of three �nite di�erence approximations to
the Navier-Stokes equations for unsteady two-dimensional motion of
incompressible viscous liquid of constant viscosity.

By using algorithmic methods of di�erential and di�erence algebra we
shown that one of the approximations which is characterized by a 5× 5
stencil is s-consistent whereas the other two with a 3× 3 stencil are not.

This result is at variance with universally accepted opinion that
discretization with a more compact stencil is numerically favoured.

Our computer experimentation revealed much better numerical behavior
of the s-consistent approximation in comparison with the considered
s-inconsistent ones.
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Conclusions
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